
1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

1

Deep Video Hashing
Venice Erin Liong, Student Member, IEEE, Jiwen Lu, Senior Member, IEEE, and Yap Peng Tan, Senior

Member, IEEE

Abstract—In this work, we propose a new deep video
hashing (DVH) method for scalable video search. Unlike most
existing video hashing methods which first extract features for
each single frame and then use conventional image hashing
techniques, our DVH learns binary codes for the entire video
with a deep learning framework so that both temporal and
discriminative information can be well exploited. Specifically,
we fuse the temporal information across different frames
within each video to learn the feature representation under
two criteria: 1) the distance between a feature pair obtained at
the top layer is small if they are in the same class, and large
if they are from different classes, and 2) the quantization
loss between the real-valued features and the binary codes
is minimized. We exploit different deep architectures to
utilize spatial-temporal information in different manners and
compare them with single frame based deep feature models
and state-of-the-art image hashing algorithms. Experimental
results on two video databases demonstrate the effectiveness
of our proposed method.

Index Terms—Scalable video search, video hashing, deep
learning.

I. INTRODUCTION

Fast and efficient visual search is a challenging task
which has gained large interests in computer vision, es-
pecially with the increasing amount of multimedia content
which are available over the internet in recent years. This
task aims to retrieve the most relevant visual content from a
database, given a query sample, in an accurate and efficient
manner. In contrast to visual images, videos provide diverse
and complex visual patterns consisting of low-level visual
content in each frame as well as high-level structured con-
tent, such as actions or events, across frames [6], [20], [21],
[30], [63]. This makes video search more challenging than
image search. Moreover, each video may have a number
of image frames which leads to exhaustive computation
and comparisons between frames, which is impractical
when we have a large video database. As can be seen in
surveillance and social media (YouTube), videos are equally
important as images. Hence, how to develop a framework
for scalable video search where discriminative information

Venice Erin Liong is with the Interdisciplinary Graduate School, Rapid-
Rich Object Search (ROSE) Lab, Nanyang Technological University,
Singapore, 639798. E-mail: veniceer001@e.ntu.edu.sg.

Jiwen Lu is with the Department of Automation, Tsinghua University,
State Key Lab of Intelligent Technologies and Systems, and Tsinghua
National Laboratory for Information Science and Technology (TNList),
Beijing, 100084, China. E-mail: lujiwen@tsinghua.edu.cn.

Yap-Peng Tan is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore, 639798. Email:
eyptan@ntu.edu.sg.

EDICS: 5-SEAR: Multimedia Search and Retrieval.

from videos can be well exploited in the extracted features
remains an important problem in visual search, especially
considering that discriminative information is preserved
as much as possible with minimal computation cost and
memory storage.

A key topic in visual search is learning-based hashing,
which transforms high-dimensional feature vectors to com-
pact binary codes, by preserving visual content using sta-
tistical inference. However, most current works in scalable
visual search focus on image-based retrieval [16], [17],
[33], [35], [38], [41], [42], [69] or text-image/image-text
retrieval [37], [44], [58], [59], [68]. To our best knowledge,
there are only few works that present an efficient framework
for video hashing. Hence, it is desirable to make better
use of hashing methods to exploit the spatial-temporal
information of videos.

Current video hashing methods are mainly applied in
two multimedia computing applications. The first is the
near-duplicate search where conventional hashing tech-
niques [12], [25], [57] were used to identify duplicate
videos efficiently [7], [8], [52]. The second is content-based
video retrieval [2], [35], [61], [63] which retrieves the most
semantically similar videos from a database for a given
query video. In this work, we focus on the latter one. Video
hashing for content-based retrieval can be divided into
three categories. The first extracts a single representative
feature vector, and then performs hashing. The second treats
each frame as an image and performs image hashing first
such that the resulting frame-frame hamming distances of
two videos are then combined through averaging. The last
selects several representative frames and employs image
hashing on these selected frames. While these frameworks
are straight-forward, they cannot exploit the temporal infor-
mation of videos in the learning stage. Furthermore, hash-
ing image frames individually is computationally expensive
considering that each video would usually have a minimum
of 30-50 frames. Hence, it is desirable to present a video
hashing framework which learns strong features by utilizing
the temporal information, and in turn, also minimizes the
hamming distance computation.

To address these challenges, we propose a Deep Video
Hashing (DVH) method for scalable video search where
we explore different CNN-based architectures. Since Con-
volutional Neural Networks (CNNs) have shown promising
performance in several computer vision tasks due to their
strong feature representation capability, we also employ
CNN in our video hashing framework. The basic idea of
our approach is shown in Fig. 1. Specifically, we build an
end-to-end deep CNN learning framework which utilizes
spatio-temporal information after the stacked convolutional-



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

2

Binary
Codes

Convolution+Pooling 

Convolution+Pooling 

Convolution+Pooling 

Convolution+Pooling 

Raw Frames CNN Feature

FC layers + Frame 
Pooling

Temporal Fusion

1
0
1
1
1

Training

sgn()

Ө
p=

4

Fig. 1. Basic idea of our proposed DVH approach. We pass a set of successive image frames with a pre-defined frame number (in this figure, p = 4) to
the convolutional and pooling layers to obtain frame-wise CNN feature representation. Then, we perform temporal fusion in the fully-connected layers.
At the final stage of our deep network, we apply the sgn(·) in the activation outputs and obtain the compact binary codes. At the training stage, the
network parameters are learned using back-propagation with a large-margin cost function such that video features that contain similar semantics/label
information are close to each other, while video features that are dissimilar are far apart as possible, and a quantization loss criterion such that the
real feature codes and binary codes are similar as much as possible.

pooling layers to extract representative video features, and
obtain compact binary codes. We discriminatively train our
model with a Siamese network, by maximizing the inter-
class distance and minimizing the intra-class distance of the
video feature pairs, as well as minimizing the quantization
loss between real-value codes and binary codes. We exploit
different spatial-temporal feature pooling architectures and
compare them to single-frame CNN architectures as well as
state-of-the-art image-based hashing methods. Experimen-
tal results on two video datasets show the effectiveness of
our proposed approach.

The contributions of this work are summarized as fol-
lows:

1) We propose a deep learning-based hashing method
called deep video hashing (DVH) which learns a deep
network to exploit the discriminative and temporal
information of videos in order to represent each video
with meaningful binary codes.

2) We conduct extensive scalable video search exper-
iments on two video datasets to demonstrate the
efficacy of our proposed method. We exploit differ-
ent frame fusion architectures and compare them to
several baseline network architectures, state-of-the-
art single frame hashing methods, and existing video
hashing methods.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Sections III presents the pro-
posed deep video hashing methods with different temporal
fusion architectures. Section IV presents the experimental
results, and Section V concludes the paper.

II. RELATED WORK

In this section, we briefly review three related topics:
1) learning-based hashing, 2) video hashing, and 3) deep
learning for video analysis.

A. Learning-based Hashing
Several learning-based hashing methods such as sub-

space models [16], [55], manifold models [22], [50], and
kernel models [39], [45] have been exploited in the lit-
erature. These methods can be classified into two classes:
unsupervised [9], [16], [17], [43], [57] and supervised [27],
[36], [38], [39], [49], [50], [55]. The first category does not
require label information. For example, Gong et al. [16]
proposed a PCA-ITQ method which learns hashing func-
tions by first performing PCA to maximize the variance of
the hash bits and then learning a rotation matrix to minimize
the quantization loss. Liu et al. [40] proposed an Anchor
Graph Hashing (AGH) method by using the concept of
anchors to identify the similarity between features. For the
second category, class-wise label information is utilized.
For example, Gong et al. [16] extended the PCA-ITQ
to CCA-ITQ which first performs CCA to maximize the
correlation between semantically similar features, and then
minimizes the quantization loss. Liu et al. [39] employed
the Kernel Supervised Hashing (KSH) method to perform
kernel mapping and utilize supervised information through
minimizing the distance of similar pairs and maximizing
the distance of dissimilar pairs. Lin et al. [36] proposed a
FastHash method to learn the binary codes through Graph
Cuts and a greedy boosted decision tree framework. While
these methods are mostly nonlinear hashing techniques,
only a few works have used deep learning techniques to
perform end-to-end nonlinear mapping [3], [10], [66], [67],
[70]. Furthermore, these methods are specifically developed
for large-scale image retrieval. In contrast, our work focuses
on using statistical knowledge for scalable video search.

B. Video Hashing
Previous works on video hashing were mostly used for

near-duplicate video retrieval tasks and several of them



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

3

focused on video feature representation rather than learning
the hashing functions [7], [8], [52], [56], [63]. For example,
Song et al. [52] introduced a multiple feature hashing
method which utilizes multiple features and extracts d-
ifferent local structures to obtain efficient binary codes.
Douze et al. [8] extracted representative spatial-temporal
features from images and used conventional hashing meth-
ods to obtain binary codes. There are only a few video
hashing methods proposed for content-based retrieval. For
example, Cao et al. [2] proposed a submodular hashing
framework which selects relevant frames from videos to
learn the hashing functions for efficient video search.
However, it did not really learn a video-based hashing
function by using statistical knowledge. Ye et al. [61]
proposed a supervised structural learning framework which
exploits the temporal consistency to learn the linear hashing
functions. However, it only learns a linear projection which
may not truly capture the nonlinear nature of video data.
Li et al. [34], [35] proposed a hashing model across
the Euclidean space and the Riemannian manifold, which
learns hashing functions based on the kernel max-margin
framework for face video retrieval. However, their work
represented videos with a single feature representation
(covariance matrix), which may not fully exploit the spatio-
temporal information in videos.

C. Deep Learning for Video Analysis

Deep learning techniques have shown great success in
various computer vision tasks such as in image recogni-
tion [31], [53], scene labeling [11], [13], and pedestrian
detection [65]. While a number of deep learning methods
have also been proposed for video analysis, most of them
focused on video action recognition [1], [26], [46], [51],
video classification [29], [62], [64] and event detection [48],
[60]. For example, Ji et al. [26] introduced a 3D Convolu-
tion Neural Networks approach which considers spatial and
temporal information for action recognition. Karpathy et
al. [29] presented an extensive evaluation of different deep
architectures for large-scale video classification where they
introduced different spatio-temporal convolutions based on
how the frames are fused in the network. Ng et al. [64]
exploited different feature fusion methods after the stacked
convolution and pooling layers and investigated the Long
Short Term Memory (LSTM) networks for video classifi-
cation. Xu et al. [60] explored pooling and encoding meth-
ods to combine frame-level features for event detection.
Simonyan et al. [51] implemented a two stream convolution
network for action recognition in videos to model the
spatial and temporal data individually, and fuse the scores
together. To our knowledge, nobody has investigated deep
architectures for video hashing.

III. PROPOSED APPROACH

In this section, we first present the basic idea of the
learning-based video hashing model, then describe our
deep video hashing (DVH) method and its implementation
details.

A. Learning-based Video Hashing

Let X = {Xi, yi}Mi=1 be a collection of M videos where
Xi = [xi,1,xi,2, . . . ,xi,fi ] ∈ Rd×fi is the ith video with
successive fi frames, yi is the label information, and xij ∈
Rd is the jth image feature frame of the video Xi with a
feature length of d. The objective of learning-based video
hashing is to learn K hash functions to project each video
into a single or multiple K-bit compact binary vectors as
follows:

FXi : Rd×fi → {−1, 1}K×gi (1)

where gi ∈ [1, fi]
1.

To obtain hashing functions, we learn a linear projection
matrix, W = [w1,w2, · · ·wK ] ∈ Rd×K to map the video
features into compact binary codes. To obtain a single
binary vector for the ith video, bi ∈ {−1, 1}K×1, we first
extract a compact single feature representation for the ith
video defined as x̃i, and then project it linearly as follows:

bi = sgn(W⊤x̃i) (2)

However, it is difficult to represent a whole video as a single
binary code without losing significant amount of informa-
tion. Hence, a single video can be represented into multiple
binary vectors by treating each frame as an image feature
and performing image-based hashing. To obtain multiple
binary vectors for the ith video, Bi ∈ {−1, 1}K×fi , we
compute the frame-wise feature representation as follows:

Bi = sgn(W⊤Xi) (3)

These conventional learning-based video hashing meth-
ods make use of hand-crafted single representation fea-
tures [34], [35] and/or use a single linear projection [61],
which may not effectively capture the nonlinear relation-
ship of video representations and cannot exploit temporal
information present in videos.

B. Deep Video Hashing

Our work employs a deep learning model to learn sev-
eral nonlinear projections to obtain compact binary codes,
where both the discriminative and temporal information of
videos are exploited in an end-to-end learning framework.
By doing so, we are able to learn powerful video represen-
tations in a spatial-temporal level. Unlike previous video
hashing methods which either learn hashing functions from
a single video feature representation or frame-by-frame, we
process a set of successive frames to obtain a single binary
vector which leads to a fewer number (gi < fi) of binary
codes to represent the ith video. Therefore, we are able
to minimize the number of binary codes to represent each
video but still extract significant information as much as
possible.

As shown in Fig. 1, given a fixed frame size p, we have
a set of image frames Iu ∈ Rp×h×w×3 that is passed
through a series of convolution and pooling layers with

1During learning, the binary codes are set to {-1,1} to ensure proper
centering, but they can then be set to {0,1} during retrieval.



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

4

C

FC

P

FC

C

FC

C

FC

C

FC

P

FC

FC

FC
LM

(a) Early Fusion

C

FC

FC

C

FC

C

FC

C

FC

FC FC
LM

FC FC FC

P P

(b) Late Fusion

C

FC

C

FC

C

FC

C

FC

FC FC

LM

P

C

FC

C

FC

C

FC

C

FC

FC FC

P

P P P P

FC FC

(c) Slow Fusion

Fig. 2. Different DVH architectures with frame fusion, where the vertical bars represent the raw image frames and each color represents a single
video, ’C’ represents the stacked convolution and pooling layers, ’FC’ represents the fully-connected layers, ’P’ represents the temporal pooling layers,
and ’LM’ represents the large-margin cost function, respectively.

fully connected layers at the end. By letting s(·) be the
output at the last fully connected layer where it contains K
nodes, the binary code for the set of image frames of the
ith video is computed as follows:

bu = sgn(s(Iu)) (4)

There are two important intuitions for our DVH model:
(1) By performing several nonlinear transformations with a
discriminative criterion, more robust visual representation
can be obtained. While kernel-based models can provide
explicit nonlinear mappings, pre-defined kernel functions
cannot well capture the nonlinearity of samples; (2) By
performing the temporal pooling, we can implicitly exploit

the relevant frames and extract a balance of global and
local information from video frames. By doing so, the noisy
frames which may degrade the quality of the binary codes
can be implicitly ignored. We discuss how to exploit both
the temporal and discriminative information in our deep
architecture as follows:

1) Temporal Information: Since videos typically repre-
sent motion-based features across time, it is necessary to
consider temporal information to fully obtain video-level
representation. In order to exploit temporal information
in deep networks, we perform pooling operations across
frames between the fully-connected layers. In our work,
we perform fusion of temporal information through average



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

5

DVH

Raw Frames

DVH

DVH

st
ri

de
=2

01001

01001

01011

Binary Code

p=
4 I1

I2

I3

b1

b2

b3

Fig. 3. Extracting binary codes for a single video from DVH. We extract the binary code in a pre-defined number of consecutive frames, p, and
shift to the next set based on a fixed stride value. In this figure, given 8 frames, the DVH fuses p = 4 frames with a stride of 2, resulting to 3 final
compact binary codes.

pooling2. We describe three deep networks with various
feature pooling architectures:

Early Fusion: The early fusion architecture first passes
image frames through the convolution and pooling layers
and then fuses the information at the first fully connected
layer immediately, as shown in Fig. 2(a).

Late Fusion: The late fusion architecture first passes
image frames through the convolution and pooling layers
up to the other fully-connected layers and then fuses the
information at the last fully connected layer, as shown in
Fig. 2(b).

Slow Fusion: The slow fusion architecture is a balance of
the early and late fusion. Image frames are passed through
the convolution and pooling layers and then fused in a
hierarchical manner such that smaller temporal windows
are used as it approaches the top layer. In this work, a two-
stage fusion strategy is implemented. Fig. 2(c) details the
architecture of this fusion strategy.

2) Discriminative and Binary Information: To learn
the parameters in the deep network discriminatively, we
employ the Siamese network [5] with a large-margin learn-
ing framework rather than the conventional contrastive
divergence criterion [18]. Specifically, we present a new
formulation which consists of two new objective crite-
rions for binary code learning. The first objective per-
forms discriminative learning. Specifically, given two sets
of image frames, Iu and Iv , we minimize the intra-class
variation and maximize the inter-class variation of the
binary feature representation at the top layer of these two
networks, simultaneously. Given their Hamming distance
du,v(bu,bv) at the top layer, where bu = sign(s(Iu)) and
bv = sign(s(Iv)), we expect that du,v is small if u and
v are the same class, and large if they are from different
classes, which is formulated as the following constraints:

du,v(bu,bv) ≤ θ1, if yu = yv (5)
du,v(bu,bv) ≥ θ2, if yu ̸= yv (6)

where θ1 and θ2 are the small and large thresholds, respec-
tively.

2We found that max pooling does not give very representative informa-
tion compared to average pooling.

By combining (5) and (6), we have the following formu-
las:

δu,v (θ − du,v(bu,bv)) > 1 (7)

where θ1 = θ− 1 and θ2 = θ+1, and δu,v = 1 means that
u and v are from the same class, and δu,v = −1 indicates
that they are from different classes.

This leads to the following objective function:

J1 = f(1− δu,v(θ − du,v(bu,bv))) (8)

where f(z) is a generalized logistic loss function which is
a smooth approximation of the hinge loss function: z =
max(z, 0), and defined as follows:

f(z) =
1

ρ
log(1 + exp(ρz)) (9)

where ρ is the sharpness parameter set to 10 and θ is the
threshold parameter set to K/4.

The second objective is to ensure efficient binary codes
by minimizing the quantization loss [16] between real-
valued codes and binary codes as follows:

J2 = ∥s(Iu)− bu∥2F + ∥s(Iv)− bv∥2F (10)

Hence, the final objective function for our DVH is
formulated as:

min
bv,bv

J = J1 + λJ2

= f(1− δu,v(θ − du,v(bu,bv)))

+ λ(∥s(Iu)− bu∥2F + ∥s(Iv)− bv∥2F )(11)

where J1 exploits the discriminative information, J2 mini-
mizes the quantization loss, and λ is a constant parameter
which balances the two criterions.

We use the standard mini-batch gradient descent and
back-propagation to solve the optimization problem. We
first relax the binary constraints in the first objective and use
the signed magnitude real codes during back-propagation.
Given hu = s(Iu) and hv = s(Iv) are the real-value
code values from the top layer, the back-propagation is
implemented first by taking the derivative of J with respect



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

6

to hu and hv:

∂J

hu
= f ′(z)δu,v(hu − hv) + λ(hu − bu) (12)

∂J

hv
= f ′(z)δu,v(hv − hu) + λ(hv − bv) (13)

These gradients are then back-propagated to update the
weights at the earlier layers.

C. Extracting Binary Codes from One Video

Since the number of frames are usually different for
different videos, we extract multiple binary codes for each
video by using our DVH approach through a set of con-
secutive image frames in the video with a specific stride.
Fig. 3 shows the hashing procedure for one video by using
our model. The over-all hamming distance, DH , for a pair
of videos are then obtained by getting the average of the
hamming distances, dH , for each pair of binary codes as
follows:

DH(Xi,Xj) =
1

gigj

gi∑
u=1

gj∑
v=1

dH(bu,bv) (14)

where gi and gj is the number of frame sets for videos
Xi and Xj . By doing so, we are able to compare the
similarity of videos with less computation than using frame
to frame comparisons, which are more representative than
using single features for each video.

D. Implementation Details

Our deep network composes of a stacked convolutional
and pooling layers with parameters obtained from pre-
trained models, and connected to a series of fully connected
layers such that the top-most layer contains K-dimensional
features. The hidden fully connected layers use rectified
linear unit (ReLU) as the activation function, while the top-
most layer has a hyperbolic tangent activation to ensure
centered feature and have balanced {-1,1} values. The
parameters in the fully connected layers are initialized
using the Xavier initialization [15]3. To be consistent,
all models have a fully-connected layers of dimensions
[4096 → 500 → 200 → K]. To avoid over-fitting, we
enable training only in the fully connected layers. Our deep
architecture and experiments were implemented under the
MatConvNet [54] framework. The learning rate, momen-
tum, and weight decay were set to 0.002, 0.9, and 0.0001,
respectively. Table I summarizes the implementations of
different DVH methods after the stacked convolutional and
pooling layers. At the training stage, we iteratively passed
through all the training videos where we randomly chose
video pairs. For each video pair, we randomly chose a set
of p successive frames and then packed them into batches
to pass into the network. We ensure that the positive and
negative pairs for each batch are in an approximate 1:2
ratio. The training procedure converged when the loss does

3We initialize the biases to be 0 and the weights at each layer as W =

U
[
−
√

6
nin+nout

,
√

6
nin+nout

]
where W ∈ Rnin×nout .

TABLE I
DVH IMPLEMENTATIONS IN THE EXPERIMENTS.

Early Fusion Late Fusion Slow Fusion
fc7 - 4096 fc7 - 4096 fc7 - 4096

pool at p frames - pool at p1 frames
fc8 - 500 fc8 - 500 fc8 - 500

- pool at p frames pool at p2 frames
fc9 - 200 fc9 - 200 fc9 - 200

K K K

not change within a certain threshold for an epoch. For
all experiments, ρ was set to 10 based on the empirical
testing to obtain a smooth approximation for the Hinge
Loss. We experimented with different values, and found
that the results appear to be particularly insensitive to ρ.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed DVH
method for scalable video search, we conducted experi-
ments on two video datasets namely the CCV and JHMDB
datasets. Figs. 4-5 show some sample video frames from
these two datasets. The details of the experiments and the
results are described in the following sections.

A. Datasets and Experimental Settings

Columbia Consumer Video (CCV) dataset [28]: It con-
sists of 9,317 videos with an average duration of 80 seconds
extracted from YouTube. The videos were categorized to 20
different categories such as basketball, wedding and music
performance. Similar to [61], we sampled frames every 2
seconds and ensured that each video had a minimum of
30 frames. Since most of the categories in this dataset are
events, the videos contain large variations among frames
making the task very challenging. In our experiments, we
randomly selected 20 videos per category for training, 25
videos per category as the query data, and 100 videos
per category as the gallery data. This results in 400, 500,
and 2000 videos for the training, query, and gallery sets,
respectively.

For our deep model, we used the pre-trained VGG-
net [51] as our stacked convolution and pooling layers. We
used a batch size of 200 and a frame size of p = 10. For
our Slow Fusion architecture, the first pooling layer fuses
the data of p1 = 5 frames with a stride of 2, the second
pooling layer fuses the data of the final p2 = 3 frames.
For testing samples, we obtained the binary codes for each
video at a frame stride of 5.

Joint-annotated HMDB (JHMDB) dataset [24]: It con-
sists of 928 action videos having 36 to 55 frames per video,
which was taken from the HMDB dataset [32] for human
motion recognition. The action videos are categorized into
21 human actions such as brushing hair, clapping, and
climbing. Although action recognition makes use of flow
and RGB information [4], we only used the full body op-
tical flow representation for simplicity. In our experiments,
we randomly selected 10 videos per category as training
samples, 10 videos per category as query samples, and 20



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

7

Fig. 4. Two sample videos for the Columbia Consumer Video (CCV) database. The first video belongs to the music performance category, while the
second video belongs to the baseball category.

Fig. 5. Two sample videos for the Joint-annotated HMDB (JHMDB) database. The first video represents a shooting action video, while the second
video represents a catching action video.

videos per category as gallery samples. This results in 210,
210, and 420 videos for the training, query, and gallery sets,
respectively.

For our deep model, we used the CNN motion network
by [14] as our pre-trained stacked convolution and pooling
layers. We used a batch size of 50 and a frame size of
p = 10. For our Slow Fusion architecture, the first pooling
layer fuses the data of p1 = 5 frames with a stride of 2,
the second pooling layer fuses the data of the final p2 = 3
frames. For testing samples, we obtained the binary codes
at a stride of 2.

B. Evaluation Metrics

To measure the performance of our DVH, we used the
Hamming ranking and Hamming look-up as evaluation
metrics to compare the performance of different methods.
For Hamming ranking, the mean Average Precision (mAP)
and Precision@N are evaluated. The mAP is defined as
the mean of the average precision of the top retrieved
samples across all queries, while Precision@N is defined
as the percentage of true labels among the top N retrieved
samples. For Hamming look-up, the precision when the
hamming radius is set as r = 2 is evaluated where it
measures the precision over all the samples that is within a
hamming radius of r = 2. At K = 64, Hamming look-up
precision is not evaluated because it will be impractical for
longer bit lengths.

C. Experimental Results

Comparison with Different Deep Baselines: We first
compared our DVH with three baseline deep architectures

which do not use temporal fusion in the fully-connected
layers. The baseline methods are described as follows:

Single-Frame: In the single-frame model, we considered
each frame of the video as a single image with its own label
information. Similar to DVH, we used the large-margin
criterion for the Siamese network to learn the parameters.
However, we only used single frames as the input and do
not perform temporal fusion. The cost function is defined
as:

J = f(1− δu,v(θ − du,v(s(xu), s(xv)))) (15)

Single-Frame + Temporal: In the single-fame + tempo-
ral model, we exploited the temporal information with the
same large-margin criterion so that the frames which are
close to each other are similar as much as possible, defined
as below:

J = f(1− δu1,v(θ − du1,v(s(xu1), s(xv))))

+ ν∥s(xu1
)− s(xu2

)∥22 (16)

where ν is the balancing term, and u1 and u2 are two
randomly selected image frames from the same video which
are apart by a minimum of five frames. In the experiments,
we used ν = 0.1. Fig. 6 shows the architectures of the first
two baseline methods.

Video-Level Feature: In this model, we pooled all
frame-level features from the single-frame deep model to
compute video-level features to evaluate the large margin
criterion. By doing so, we obtained a representative global
binary vector for each video.

Tables II and III show the performance of different meth-
ods on the CCV and JHMDB datasets, respectively. As can
be seen, our DVH architectures outperform the other deep



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

8

C C

FC

FC

FC
LM

FC

FC

FC

(a) Single Frame

C C

FC

FC

FC
LM + Temporal

FC

FC

FC

C

FC

FC

FC

(b) Single Frame + Temporal

Fig. 6. Deep baseline architectures based on frame-by-frame training for video hashing. The first baseline is similar to image hashing where each
frame is a single image. The second baseline adds a temporal criterion during training such that given two frames that are temporally close should
have a similar compact feature as much as possible.

TABLE II
RESULTS ON THE CCV DATASET IN COMPARISON WITH THE BASELINE DEEP ARCHITECTURE.

Method Hamming ranking (mAP, %) precision (%) @ N = 100 precision (%) @ r=2
16 32 64 16 32 64 16 32

Single 32.62 34.23 35.02 37.37 38.86 38.50 23.38 5.63
Single+Temporal 33.60 35.60 37.27 38.05 39.74 40.93 30.76 16.44
Video-Level 29.45 30.79 29.19 34.44 35.98 34.05 22.48 11.11
Early Fusion 37.18 40.86 41.54 40.11 41.89 42.41 36.61 22.80
Late Fusion 38.54 41.08 41.51 40.29 42.08 42.23 37.32 23.10
Slow Fusion 38.27 40.80 41.41 39.95 41.88 42.34 36.55 23.06

TABLE III
RESULTS ON THE JHMDB DATASET IN COMPARISON WITH THE BASELINE DEEP ARCHITECTURE.

Method Hamming ranking (mAP, %) precision (%) @ N = 10 precision (%) @ r=2
16 32 64 16 32 64 16 32

Single 32.73 33.89 31.74 42.67 43.81 44.05 6.19 0
Single+Temporal 33.19 34.85 35.58 43.81 45.33 45.19 9.05 0
Video-Level 30.07 30.95 32.53 39.10 41.67 41.86 6.58 0
Early Fusion 35.19 37.43 37.95 46.48 47.62 48.19 31.31 12.46
Late Fusion 34.93 36.78 37.53 45.10 48.05 48.14 29.67 10.10
Slow Fusion 34.86 36.59 36.63 44.52 47.90 48.24 25.25 8.67

learning based baseline architectures. It is interesting to see
that the second baseline (Single+Temporal) beats the first
baseline (Single), which shows that temporal information is
important. The video-level features also yielded competitive
representations but often achieved worse performance than
the single-frame deep model. The late fusion and early
fusion DVH architectures obtain the best performance on
the CCV and JHMDB datasets, respectively. For CCV, a
late fusion would mean it prefers to exploit high-level
global information, while for JHMDB an Early Fusion
shows it prefers to exploit local motion information. This is
reasonable because JHMDB focuses on action information

while CCV is more on events which are generally holistic.
We also examined the retrieval time of different deep

baseline architectures, which is shown in Fig. 7. As can
be seen, a longer retrieval time is necessary since the
deep baseline architectures transform each image frame
into a binary code. Differently, our DVH method performs
temporal fusion so fewer binary code comparisons are
implemented resulting in a faster retrieval time for the
whole query-gallery set. This is most obvious on the CCV
dataset since more frames are present in a single video, and
larger gallery and query videos are used.

Comparison with State-of-the-Art Learning-based



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

9

16 32 64
0

50

100

150

200

250

300

350

400

T
im

e 
(s

ec
on

ds
)

Bit Number

 

 

w/ Temporal Fusion
w/o Temporal Fusion

(a) CCV

16 32 64
0

2

4

6

8

10

12

14

16

18

20

T
im

e 
(s

ec
on

ds
)

Bit Number

 

 

w/ Temporal Fusion
w/o Temporal Fusion

(b) JHMDB

Fig. 7. Retrieval time on the (a) CCV and (b) JHDMB datasets, respectively.

TABLE IV
RESULTS OF DIFFERENT LEARNING-BASED HASHING METHODS ON THE CCV DATASET.

Method Hamming ranking (mAP, %) precision (%) @ N = 100 precision (%) @ r=2
16 32 64 16 32 64 16 32

PCAH [55] 20.83 21.45 19.37 25.80 26.50 25.51 3.03 0
PCA-ITQ [16] 22.49 24.13 24.42 27.71 28.99 29.61 13.43 0
AGH [40] 14.91 15.22 11.24 20.52 23.37 20.16 13.43 1.58
KSH [39] 32.43 34.34 35.40 36.27 38.33 38.75 18.27 7.64
CCA-ITQ [16] 36.58 38.18 38.32 39.13 40.41 40.51 16.15 7.17
FastHash [36] 34.72 38.37 38.47 38.83 40.85 41.37 12.73 5.36
DVH 38.54 41.08 41.51 40.29 42.08 42.23 37.32 23.10

TABLE V
RESULTS OF DIFFERENT LEARNING-BASED HASHING METHODS ON THE JHDMB DATASET.

Method Hamming ranking (mAP, %) precision (%) @ N = 10 precision (%) @ r=2
16 32 64 16 32 64 16 32

PCAH [55] 16.89 17.64 18.30 27.05 31.31 31.81 0 0
PCA-ITQ [16] 13.80 14.16 14.44 22.52 25.19 27.05 0.58 0
AGH [40] 13.74 14.30 16.90 23.38 26.86 27.57 0.12 0
KSH [39] 27.50 28.32 33.51 39.14 39.05 42.38 0 0
CCA-ITQ [16] 27.20 31.96 31.44 43.48 47.56 47.43 1.51 0
FastHash [36] 31.19 33.72 36.63 42.29 44.33 46.52 0 0
DVH 35.19 37.43 37.95 46.48 47.62 48.42 31.31 12.46

Hashing methods: We also compared our DVH method
with several popular hashing methods including PCA
Hashing [55], PCA-ITQ [16], Anchor Graph Hashing
(AGH) [40], Kernel Supervised Hashing (KSH) [39], CCA-
ITQ [16], and FastHash [36]. Specifically, PCAH, PCA-
ITQ and AGH are unsupervised hashing methods, and
KSH, CCA-ITQ, and FastHash exploit the label information
of samples to learn discriminative hash codes. The standard
implementations of all methods are from the original au-
thors and the default parameters were set based on their
respective papers. For consistency, the experiments were
carried out with the same selected training, gallery and
query sets. For the different hashing methods being com-
pared, we considered each frame as an image and encoded
its respective binary code based on the 4096-dimension
CNN feature obtained from the fully-connected layer of the
pre-trained models used, and defined the hamming distance
of two videos as the average of all hamming distances

between images from each video.
Tables IV and V show the performance of different

hashing methods on the CCV and JHMDB experiments,
respectively. We found that the DVH architecture yielded
the best performance, where the Late fusion was for the
CCV dataset, and the Early fusion was for the JHMDB
dataset, respectively. As can be seen, our method con-
sistently outperforms the other existing hashing methods.
Most surprising is the hamming look-up precision (HLP)
evaluation results which show significant improvement
across varying bit lengths. This shows that representing
the video in a deep nonlinear binary feature vector gives
strong representation for retrieval. Figs. 8-11 show the
recall and precision curve, and precision curves vs the
retrieval number N on the CCV and JHMDB datasets. We
see that our method outperforms the compared methods in
most scenarios.

Comparison with Different Video Hashing Meth-



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

10

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
ci

si
on

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(a) PR curve (16 bits)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(b) PR curve (32 bits)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(c) PR curve (64 bits)

Fig. 8. Precision-Recall (PR) curves on the CCV dataset versus varying code lengths.

50 100 150 200 250
N

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
re

ci
si

on
@

N

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(a) Prec-N curve (16 bits)

50 100 150 200 250
N

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
re

ci
si

on
@

N

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(b) Prec-N curve (32 bits)

50 100 150 200 250
N

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
re

ci
si

on
@

N

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(c) Prec-N curve (64 bits)

Fig. 9. Precision-N curves on the CCV dataset versus varying code lengths.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(a) PR curve (16 bits)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(b) PR curve (32 bits)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(c) PR curve (64 bits)

Fig. 10. Precision-Recall (PR) curves on the JHMDB dataset versus varying code lengths.

2 4 6 8 10 12 14 16 18 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

N

P
re

ci
si

on
@

N

 

 

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(a) Prec-N curve (16 bits)

2 4 6 8 10 12 14 16 18 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

N

P
re

ci
si

on
@

N

 

 

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(b) Prec-N curve (32 bits)

2 4 6 8 10 12 14 16 18 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

N

P
re

ci
si

on
@

N

 

 

PCAH
ITQ
AGH
CCAITQ
KSH
FASTHASH
DVH

(c) Prec-N curve (64 bits)

Fig. 11. Precision-N curves on the JHMDB dataset versus varying code lengths.



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

11

0 0.0001 0.0005 0.001 0.005 0.01
41.15

41.2

41.25

41.3
m

A
P

λ

(a) CCV

0 0.0001 0.0005 0.001 0.005 0.01
37.2

37.3

37.4

37.5

37.6

37.7

37.8

37.9

38

m
A

P

λ

(b) JHMDB

Fig. 12. The mAP performance of our DVH method at varying λ for the 64-bit experiment on the (a) CCV and (b) JHMDB datasets, respectively.

TABLE VI
HAMMING RANKING (MAP, %) RESULTS ON THE CCV DATASET IN

COMPARISON WITH OTHER VIDEO HASHING ALGORITHMS.

Method 16 bits 32 bits 64 bits
DVH-CNN 38.54 41.08 41.51
ITQ-CNN 22.49 24.13 24.42
ITQ-SIFT 12.33 14.63 14.52
VHDT-SIFT [61] 11.40 13.00 15.90
CVC-CNN [34] 27.53 32.16 36.14

TABLE VII
HAMMING RANKING (MAP, %) RESULTS OF OUR DVH ON THE CCV

DATASET IN DIFFERENT VALUES OF p AND s.

Method 16 bits 32 bits 64 bits
p = 2, s = 2 37.81 39.48 40.46
p = 5, s = 5 37.81 40.78 41.09
p = 10, s = 5 38.54 41.08 41.51
p = 20, s = 5 37.25 40.11 41.31

ods: We compared our method with two video hashing
methods as shown in Table VI. For Video Hashing with
both Discriminative commonality and Temporal consisten-
cy (VHDT) [61], the mAP results were obtained from the
original paper. However, their method used SIFT BoW fea-
tures so it is difficult to directly compare. To approximate,
we have applied ITQ-SIFT and found that it is comparable
with VHDT. Our DVH is much better than ITQ-CNN. This
is because VHDT performs linear transformations which
may not really capture the nonlinearity of data in videos.

For the Compact Video Coding (CVC) method [34], we
used the publicly released code, tuned the parameters to
obtain the best possible result and used CNN features to
construct the covariance feature for each video. As can be
seen, our DVH outperforms CVC at all bit lengths. This
is because CVC converted the whole video into a single
feature code which may lead to loss of temporal informa-
tion, while our DVH method considered the temporal and
discriminative information of each video.

Parameter Analysis: We also analyzed the varying
values of λ during training to see the contribution of the
two criterions in the over-all performance of our DVH

TABLE VIII
HAMMING RANKING (MAP, %) RESULTS OF OUR DVH ON THE

JHMDB DATASET IN DIFFERENT VALUES OF p AND s.

Method 16 bits 32 bits 64 bits
p = 2, s = 2 32.48 32.58 33.55
p = 5, s = 5 33.21 35.32 35.30
p = 10, s = 5 35.19 37.46 37.95
p = 20, s = 5 37.97 35.82 36.43

method. Fig. 12 shows the mAP performance of our DVH
method at λ = [0, 0.01, 0.005, 0.001, 0.0005, 0.0001]
for the CCV and JHMDB datasets. As expected, we see
that the discriminative information makes most of the
contribution since even at λ = 0, the performance is very
competitive. Nevertheless, minimizing the quantization loss
still provides improvement in the over-all performance.
However, it is important to see that the quantization loss
criterion should not overpower the discriminative criterion.
In our experiments, the optimal value for λ is at a range of
[0.005, 0.01].

We also conducted experiments on varying values of
the frame size p, which is the number of frames as the
input in the deep network to obtain a binary code, and the
stride s, which is the number of non-overlapped frames.
We used the best fusion algorithm for each dataset (CCV-
Late, JHMDB-Early). As can be seen in Table VII and VIII,
our method shows a decline in mAP at p < 10 probably
because frames are very much similar which do not really
exploit the temporal information. Similarly, a much higher
p may also reduce the performance because it extracts more
global video features.

D. Discussion

The above experimental results suggest the following
three key observations:

1) Our deep video hashing method achieves very com-
petitive performance compared to other deep baseline
architectures which shows that performing temporal
fusion during training contributes well to the over-
all performance. In addition, retrieval time is also



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

12

reduced because of the temporal fusion.
2) Our DVH outperforms state-of-the-art image-based

hashing methods which shows that the binary codes
obtained from our hashing method are strong rep-
resentations due to the discriminative training we
employed. Furthermore, our DVH also outperforms
other video hashing methods by a large margin.

3) The large-margin criterion yields the largest contri-
bution in our DVH method. However, the binary
quantization term also provides improvements in the
over-all performance. For the parameter p, we see
that the best performance can be obtained when the
parameter of p is set to 10 because it is a good balance
of extracting global and local video features.

V. CONCLUSION

In this paper, we have proposed a deep video hashing
approach with various frame pooling architectures to learn
binary codes for each video in a deep framework such that
both temporal and discriminative information are well ex-
ploited. Experimental results on two video databases clearly
demonstrate that our method achieved better performance
with the state-of-the-art hashing methods.

There are two interesting directions for future work:
1) Our DVH method composed of frame-level pooling

layers to exploit temporal information. It is interesting
to incorporate more complex networks such as re-
current neural networks (RNN) [47], long short term
memory (LSTM) [19] and 3D-CNNs [26] to further
improve the performance.

2) In this work, we learned our DVH network using su-
pervised information. Hence, it is interesting to learn
a deep network using quantization-based [16], [23]
criterions, which does not exploit label information.

ACKNOWLEDGEMENT

This work is supported by the National Key Research
and Development Program of China under Grant 2016YF-
B1001001, the National Natural Science Foundation of
China under Grants 61672306, and the National 1000
Young Talents Plan Program. Partial of this work was
carried out at the Rapid-Rich Object Search (ROSE) Lab
at the Nanyang Technological University Singapore.

REFERENCES

[1] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt.
Sequential deep learning for human action recognition. In Human
Behavior Understanding, pages 29–39. 2011.

[2] L. Cao, Z. Li, Y. Mu, and S.-F. Chang. Submodular video hashing:
a unified framework towards video pooling and indexing. In ACM
MM, pages 299–308, 2012.

[3] Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen. Deep quantization
network for efficient image retrieval. In AAAI, pages 3457–3463,
2016.

[4] G. Chéron, I. Laptev, and C. Schmid. P-cnn: pose-based cnn features
for action recognition. In ICCV, pages 3218–3226, 2015.

[5] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric
discriminatively, with application to face verification. In CVPR,
pages 539–546, 2005.

[6] C. L. Chou, H. T. Chen, and S. Y. Lee. Pattern-based near-
duplicate video retrieval and localization on web-scale videos. TMM,
17(3):382–395, 2015.

[7] B. Coskun, B. Sankur, and N. Memon. Spatio–temporal transform
based video hashing. TMM, 8(6):1190–1208, 2006.

[8] M. Douze, H. Jégou, and C. Schmid. An image-based approach
to video copy detection with spatio-temporal post-filtering. TMM,
12(4):257–266, 2010.

[9] L.-Y. Duan, J. Lin, Z. Wang, T. Huang, and W. Gao. Weighted
component hashing of binary aggregated descriptors for fast visual
search. TMM, 17(6):828–842, 2015.

[10] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep hashing
for compact binary codes learning. In CVPR, pages 2475–2483,
2015.

[11] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. TPAMI, 35(8):1915–1929,
2013.

[12] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, pages 518–529, 1999.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation.
In CVPR, pages 580–587, 2014.

[14] G. Gkioxari and J. Malik. Finding action tubes. In CVPR, pages
759–768, 2015.

[15] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In ICAIS, pages 249–256, 2010.

[16] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean
approach to learning binary codes. In CVPR, pages 817–824, 2011.

[17] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-preserving
quantization method for learning binary compact codes. In CVPR,
pages 2938–2945, 2013.

[18] G. E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural computation, 14(8):1771–1800, 2002.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[20] S. C. Hoi and M. R. Lyu. A multimodal and multilevel ranking
scheme for large-scale video retrieval. TMM, 10(4):607–619, 2008.

[21] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank. A survey on visual
content-based video indexing and retrieval. TSCVT, 41(6):797–819,
2011.

[22] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang. Locally linear hashing for
extracting non-linear manifolds. In CVPR, pages 2115–2122, 2014.

[23] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. TPAMI, 33(1):117–128, 2011.

[24] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. Black. Towards
understanding action recognition. In ICCV, pages 3192–3199, 2013.

[25] R. Ji, L.-Y. Duan, J. Chen, L. Xie, H. Yao, and W. Gao. Learning
to distribute vocabulary indexing for scalable visual search. TMM,
15(1):153–166, 2013.

[26] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks
for human action recognition. TPAMI, 35(1):221–231, 2013.

[27] Y.-G. Jiang, J. Wang, X. Xue, and S.-F. Chang. Query-adaptive
image search with hash codes. TMM, 15(2):442–453, 2013.

[28] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer
video understanding: A benchmark database and an evaluation of
human and machine performance. In ACM MM, pages 29–37, 2011.

[29] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei. Large-scale video classification with convolutional neural
networks. In CVPR, pages 1725–1732, 2014.

[30] C. Kofler, M. Larson, and A. Hanjalic. Intent-aware video search
result optimization. TMM, 16(5):1421–1433, 2014.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi-
fication with deep convolutional neural networks. In NIPS, pages
1097–1105, 2012.

[32] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a
large video database for human motion recognition. In ICCV, pages
2556–2563, 2011.

[33] P. Li, M. Wang, J. Cheng, C. Xu, and H. Lu. Spectral hashing with
semantically consistent graph for image indexing. TMM, 15(1):141–
152, 2013.

[34] Y. Li, R. Wang, Z. Cui, S. Shan, and X. Chen. Compact video code
and its application to robust face retrieval in tv-series. In BMVC,
pages 1–12, 2014.

[35] Y. Li, R. Wang, S. Shan, and X. Chen. Hierarchical hybrid statistic
based video binary code and its application to face retrieval in tv-
series. In FG, pages 1–8, 2015.

[36] G. Lin, C. Shen, Q. Shi, A. Hengel, and D. Suter. Fast supervised
hashing with decision trees for high-dimensional data. In CVPR,
pages 1963–1970, 2014.

[37] Z. Lin, G. Ding, M. Hu, and J. Wang. Semantics-preserving hashing



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2645404, IEEE
Transactions on Multimedia

13

for cross-view retrieval. In CVPR, pages 3864–3872, 2015.
[38] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph hashing.

In NIPS, pages 3419–3427, 2014.
[39] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised

hashing with kernels. In CVPR, pages 2074–2081, 2012.
[40] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs.

In ICML, pages 1–8, 2011.
[41] X. Liu, X. Fan, C. Deng, Z. Li, H. Su, and D. Tao. Multilinear

hyperplane hashing. In CVPR, pages 5119–5127, 2016.
[42] X. Liu, L. Huang, C. Deng, B. Lang, and D. Tao. Query-adaptive

hash code ranking for large-scale multi-view visual search. TIP,
25(10):4514–4524, 2016.

[43] X. Liu, Y. Mu, D. Zhang, B. Lang, and X. Li. Large-scale unsuper-
vised hashing with shared structure learning. TSCVT, 45(9):1811–
1822, 2015.

[44] J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber.
Multimodal similarity-preserving hashing. TPAMI, 36(4):824–830,
2014.

[45] Y. Mu, G. Hua, W. Fan, and S.-F. Chang. Hash-svm: Scalable kernel
machines for large-scale visual classification. In CVPR, pages 979–
986, 2014.

[46] X. Peng and C. Schmid. Multi-region two-stream r-cnn for action
detection. In ECCV, pages 744–759, 2016.

[47] D. Rumelhart, G. Hinton, and R. Williams. Learning sequential
structure in simple recurrent networks. Parallel distributed process-
ing: Experiments in the microstructure of cognition, 1986.

[48] J. Shao, C.-C. Loy, K. Kang, and X. Wang. Slicing convolutional
neural network for crowd video understanding. In CVPR, pages
5620–5628, 2016.

[49] F. Shen, C. Shen, Q. Shi, A. Van Den Hengel, and Z. Tang. Inductive
hashing on manifolds. In CVPR, pages 1562–1569, 2013.

[50] F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang, and H. T.
Shen. Hashing on nonlinear manifolds. TIP, 24(6):1839–1851, 2015.

[51] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556,
pages 1–14, 2014.

[52] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo. Effective mul-
tiple feature hashing for large-scale near-duplicate video retrieval.
TMM, 15(8):1997–2008, 2013.

[53] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing
the gap to human-level performance in face verification. In CVPR,
pages 1701–1708, 2014.

[54] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks
for matlab. In ACM MM, pages 689–692, 2015.

[55] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for
scalable image retrieval. In CVPR, pages 3424–3431, 2010.

[56] J. Wang, J. Sun, J. Liu, X. Nie, and H. Yan. A visual saliency based
video hashing algorithm. In ICIP, pages 645–648, 2012.

[57] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS,
pages 1753–1760, 2008.

[58] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang. Sparse
multi-modal hashing. TMM, 16(2):427–439, 2014.

[59] X. Xu, F. Shen, Y. Yang, and H. T. Shen. Discriminant cross-modal
hashing. In ACM ICMR, pages 305–308, 2016.

[60] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative cnn video
representation for event detection. In CVPR, pages 1798–1807, 2015.

[61] G. Ye, D. Liu, J. Wang, and S.-F. Chang. Large-scale video hashing
via structure learning. In ICCV, pages 2272–2279, 2013.

[62] H. Ye, Z. Wu, R.-W. Zhao, X. Wang, Y.-G. Jiang, and X. Xue.
Evaluating two-stream cnn for video classification. In ICMR, pages
435–442, 2015.

[63] L. Yu, Z. Huang, J. Cao, and H. T. Shen. Scalable video event
retrieval by visual state binary embedding. TMM, 18(8):1590–1603,
2016.

[64] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici. Beyond short snippets: Deep networks
for video classification. In CVPR, pages 4694–4702, 2015.

[65] X. Zeng, W. Ouyang, M. Wang, and X. Wang. Deep learning of
scene-specific classifier for pedestrian detection. In ECCV, pages
472–487. 2014.

[66] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable
deep hashing with regularized similarity learning for image retrieval
and person re-identification. TIP, 24(12):4766–4779, 2015.

[67] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic ranking
based hashing for multi-label image retrieval. In CVPR, pages 1556–
1564, 2015.

[68] J. Zhou, G. Ding, and Y. Guo. Latent semantic sparse hashing for
cross-modal similarity search. In ICMR, pages 415–424, 2014.

[69] W. Zhou, M. Yang, H. Li, X. Wang, Y. Lin, and Q. Tian. Towards
codebook-free: Scalable cascaded hashing for mobile image search.

TMM, 16(3):601–611, 2014.
[70] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing network for

efficient similarity retrieval. In AAAI, pages 2415–2421, 2016.


